

Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

TimeVarying, Multivariate Volume Data Reduction

Nathaniel Fout KwanLiu Ma
Department of Computer Science

University of California, Davis

James Ahrens
Advanced Computing Laboratory
Los Alamos National Laboratory

ABSTRACT

Large-scale supercomputing is revolutionizing the way sci-
ence is conducted. A growing challenge, however, is under-
standing the massive quantities of data produced by large-
scale simulations. The data, typically time-varying, multi-
variate, and volumetric, can occupy from hundreds of giga-
bytes to several terabytes of storage space. Transferring and
processing volume data of such sizes is prohibitively expen-
sive and resource intensive. Although it may not be possible
to entirely alleviate these problems, data compression should
be considered as part of a viable solution, especially when
the primary means of data analysis is volume rendering.
In this paper we present our study of multivariate compres-
sion, which exploits correlations among related variables, for
volume rendering. Two configurations for multidimensional
compression based on vector quantization are examined. We
emphasize quality reconstruction and interactive rendering,
which leads us to a solution using graphics hardware to per-
form on-the-fly decompression during rendering.

Categories and Subject Descriptors

I.3 [Computer Graphics]: Applications; E.4 [Coding and
Information Theory]: Data compaction and compression

Keywords

Compression, hardware acceleration, multivariate data, time-
varying data, interactive visualization, vector quantization,
volume rendering

1. INTRODUCTION
The advent of terascale supercomputers enables advanced

scientific simulations that probe deeply into complex phys-
ical phenomena and chemical processes at the heart of cli-
mate modeling, combustion engineering, fusion energy sci-
ences, nuclear astrophysics, high-energy physics, life sciences,
etc. While modeling at unprecedented scale and complexity,
one pressing problem for the scientists, however, is that they

c©2005 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or coauthored by a contractor or affiliate of
the [U.S.] Government. As such, the Government retains a nonexclusive,
royaltyfree right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SAC ’05, March 1317, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1581139640/05/0003 ...$5.00.

do not have convenient and efficient ways to store, transfer
and understand the massive amount of data produced by
their simulations. These datasets are typically time-varying
and multivariate, consisting of both scalar and vector fields.
One complete data set can take terabytes of storage space.
Consequently, scientists generally leave their data on a mass
storage system at the supercomputing facility where they
run their simulations. Because of the high cost of transfer-
ring terabytes of data, the subsequent data analyses are done
mostly to a small subset of the dataset and limited by what
the supercomputing facility can provide. Even though one
can always utilize faster (and more expensive) storage and
network hardware to relieve this problem, a more effective
solution would be to reduce the data.

Various data reduction techniques that use either value-
based encoding or physically-based feature extraction have
been investigated to make possible comprehension of the es-
sential information in large volume data. This paper presents
a study of volume data reduction with lossy compression in
order to facilitate evaluation by visualization. Our study is
unique in two ways.

First, in terms of encoding we study multivariate volume
compression as opposed to scalar volume compression. The
justification for this is the fact that in most simulations the
variables represent certain physical properties of the system.
These properties are rarely independent, although the rela-
tionships may be very complex. In our study, we attempt to
take advantage of these relationships indirectly by relying
on their correlation to provide good rate-distortion behav-
ior during compression. The compression method, being a
variant of vector quantization, is block-based, and so we in-
vestigate two possible partitioning strategies based on the
dimensionality of the data. The first is spatial compression,
which is analogous to typical image compression methods.
The second is temporal compression, in which voxels with
temporal proximity are grouped together.

Second, in terms of decoding we propose on-the-fly decom-
pression during rendering by leveraging the programmabil-
ity of modern graphics cards. While this topic has been
explored by other researchers, a serious drawback common
to all these efforts is the inability to interactively recon-
struct a continuous representation of the volume, as well as
the inability to compute gradients needed for volume shad-
ing. We propose the use of a novel decompression algorithm
which allows high-quality volume rendering directly from
the compressed volume, including continuous reconstruction
and lighting, all at interactive frame rates.

Our use of lossy compression is based on the observation

1224

2005 ACM Symposium on Applied Computing

that high data precision is important during the simulation
to maintain numerical stability, but for visualization data
integrity can be slightly compromised. While using mul-
tivariate compression has the potential to offer improved
performance over independent compression of variables, an
important advantage of multivariate compression is that it
can facilitate comparative visualization, which usually re-
quires fast access to multiple collocated variables.

Our results show an average storage savings of over 70%,
which allows us to significantly lower the storage require-
ment for the entire data set, transfer data of comparable
content much faster through the storage hierarchy, and fit
more time steps (and variables) in memory. Our findings
suggest that scientists should consider such a data reduc-
tion option in their terascale (and soon petascale) data un-
derstanding infrastructure.

2. BACKGROUND
In this section we give a brief background in the area of

volumetric compression. We divide previous work into two
catagories, either spatial or temporal, based on the domain
of the compression algorithm used. Methods that consider
time-varying volumes as a single 4D data volume are also
considered to be temporal for our classification purposes.

2.1 Volume Data Compression
Volumetric compression methods generally fall into one

of two categories. The first type is based on the premise
that volumetric compression should be tightly coupled with
rendering. This in turn imposes special limitations on the
compression algorithm; in particular, decompression must
allow fast, direct, random voxel access, as the voxel access
pattern in volume rendering is view dependent. Alterna-
tively, a loose coupling allows more freedom in selection,
with a potential disadvantage being decreased interactivity.
On one extreme is the direct rendering of compressed data
without decompression, and on the other is complete de-
compression prior to rendering. Both of these options suffer
from serious drawbacks, however, and the best overall per-
formance is achieved with methods that combine efficient
decompression closely with rendering.

Much progress has been made in the application of com-
pression to regular-grid volume data. Compression in gen-
eral falls into two categories, lossless and lossy. Lossless
compression usually results in lower compression ratios, but
offers in return perfect reconstruction of the original data.
In [6] differential encoding, a type of predictive encoding, is
used in conjunction with Huffman coding to losslessly en-
code volumes, achieving better compression (approx. 50%)
than common lossless compression utilities by taking ad-
vantage of the 3D structure in volume data. Another more
recent work [4] provides lossless compression of smooth time-
varying simulation data, also using predictive encoding. This
technique targets scientific data stored in floating-point for-
mat, and offers a lossy alternative as well which is based
on truncation of the least important bits in the compressed
representation.

Lossy compression has the potential to offer the great-
est storage savings in situations where some amount of er-
ror is tolerable. Popular lossy compression methods include
transform encoding and subband/wavelet encoding. These
techniques rely on quantization to achieve compression, but
quantization can also be applied directly to the original data.

In transform encoding the Discrete Cosine Transform (DCT)
is most suitable for compression. Direct application of the
DCT to volume data using a 3D DCT is described in [25],
where blocks are decompressed on demand in order to sup-
port coupling of rendering and decompression. In [2] the
volume is also blocked and a 3D DCT is applied, but ren-
dering is performed on the compressed data set using the
Fourier Projection Theorum. Wavelet compression has be-
come extremely popular for lossy compression, and is the
method of choice for the JPEG-2000 compression standard.
A 3D wavelet transform in combination with motion com-
pensation (a technique used in video encoding) is used in [8]
to achieve high-rate compression of time-varying volumes.
In [9] wavelet compression is used with projective classifi-
cation to enable decompression and rendering together at
interactive frame rates using texture hardware. Subband
encoding, closely related to wavelet encoding, has also been
applied to volume data as described in [7]. In [17] high-
pass coefficients from the Laplacian decomposition are en-
coded using vector quantization, and decompression is cou-
pled tightly with rendering by performing on-the-fly decom-
pression in graphics hardware. Vector quantization (VQ) is
applied in a straightforward way to volume data in [15, 16]
by grouping voxel attributes to form vectors. Finally, in [3]
fractal compression is adapted to volumetric data with re-
sults indicating better performance than VQ but not quite
as good as DCT. However, fractal decompression prohibits
close coupling with rendering.

2.2 TimeVarying Volume Data Compression
The problem of time-varying data visualization has re-

ceived increasing attention, and various data encoding, re-
duction, and rendering techniques have been developed. One
class of techniques treats time-varying volume data as 4D
data. For example, Wilhelms and Van Gelder [22] encode
time-varying data with a 4D tree (an extension of octree)
and use an associated error/importance model to control
compression rate and image quality. Larsen et al. [12] intro-
duce a more refined design based on a 4th-root-of-2 subdivi-
sion scheme coupled with a linear B-spline wavelet scheme
for representing time-varying volume data at multiple levels
of detail. Woodring et al [23] visualize 4D data by slicing or
volume rendering in the 4D space. The resulting hyperplane
and hyperprojection can display some unique space-time fea-
tures.

The other class of techniques separates the time dimension
from the spatial dimensions. Shen and Johnson [19] intro-
duce differential volume rendering which exploits temporal
coherence of the data and compress the data in a substantial
way, but it is limited to a one-way, sequential browsing of the
temporal aspect of the data. Ma et al. [14] integrate non-
uniform quantization with octree and difference encoding
and speed up rendering by sharing subtrees among consecu-
tive time steps. Shen et al. [18] refine the design deriving a
hierarchical data structure called the Time-Space Partition-
ing (TSP) tree, which captures both the spacial and tem-
poral coherence from a time-varying field. It uses an octree
for partitioning the volume spatially and a binary tree for
storing temporal information.

Several other techniques also worth mentioning. Wester-
mann [21] encodes each time step separately using wavelet
transforms. The result is a compressed multiscale tree struc-
ture also providing an underlying analysis model for char-

1225

acterizing the data. By examining the multiscale tree struc-
tures and wavelet coefficients, it is possible to perform fea-
ture extraction, tracking, and further compression more ef-
ficiently. Anagnostou et al. [1] exploit temporal coherence
to render only the changed parts of each slice and use run-
length encoding to compress the spatial domain of the data.
Lum et al. [13] use temporal encoding of indexed volume
data that can be quickly decoded in graphics hardware.
Sohn et al. [20] compress time-varying isosurfaces and asso-
ciated volumetric features with wavelet transforms to allow
fast reconstruction and rendering.

3. MULTIDIMENSIONAL ENCODING
The first step to choosing an appropriate compression

scheme is to identify the problem domain. In our case
we would like to achieve interactive visualization of multi-
variate time-varying data. Although a small loss of data is
acceptable, a reasonable amount of fidelity is essential if sci-
entific observations are to be made based on the rendering.
On the other hand, high rates are required to handle such
large data sets. If unconstrained we would probably use a
wavelet compression scheme, but unfortunately it is diffi-
cult to achieve interactive rendering from wavelet-encoded
data. With all of these requirements in mind we chose vector
quantization as the tool of choice.

Vector quantization (VQ) extends scalar quantization by
grouping the data into blocks or vectors to be compressed
together. A relatively small set of representative vectors is
then constructed from the data and placed in a codebook.
Each vector from the data is represented by a codebook vec-
tor, as determined by searching the codebook for the closest
vector. Vectors in the codebook are identified by a unique
index, so that the compressed data will consist of a series
of indices and a codebook containing the mapping from in-
dex to reconstruction vector. There are numerous variants
of VQ, but in this work we use only one of these, called
Mean-Removed Shape-Gain VQ (MRSG-VQ). The idea is
to reduce the size of the codebook needed by removing as-
pects of the data which impede the quantization (such as the
dynamic range) and to store them separately. With MRSG-
VQ we remove the mean and magnitude and encode these
separately using scalar quantization. The remaining vector,
having zero mean and unit magnitude, represents the shape
or trend of the vector. Encoding these shape vectors allows
the VQ to better capture the structure present in the data.

In this section we describe how VQ can be applied to
achieve data reduction in large multivariate time-varying
data sets. One key advantage of VQ which makes it ideal
for our situation is the speed of decompression; essentially
a single table look-up is all that is required. We explore
two encoding possibilities, describing both the algorithm for
compression and the decompression process as mapped to
programmable graphics hardware.

3.1 Compression Strategies
An important decision in VQ is how the data will be

blocked into vectors. Several options exist, based on iden-
tification of the different dimensions within which the data
is structured. As our data is multivariate, time-varying and
in 3D space, we have three obvious choices. First, we could
simply group all the variables in a single voxel together as
one vector. This would be a direct way to perform multi-
dimensional encoding, but the problem is that for many of

Figure 1: Multidimensional encoding of 2 variables
f and g. Step A (for spatial blocking only) takes a
2×2×2 block of voxels and rearranges them to be
linear. In the case of temporal blocking we already
have a linear arrangement of voxels. Step B forms
separate vectors for each variable. Step C removes
the mean and gain to be scalar quantized, and con-
catenates the shape vectors to be vector quantized.

the datasets there exists only a few variables. Encoding such
small vectors does not provide high rates. Second, we could
group the time series of a single voxel, achieving temporal
compression. Of course the level of temporal coherency in
the data set would be important for the success of this op-
tion. Finally, as in typical image compression algorithms we
could group spatially, dividing the volume into small blocks
to be compressed. In our study we explore the latter two
options.

The first configuration we consider is temporal blocking,
as shown in Figure 1. We first take the time series of each
variable in a given voxel separately. We then process this se-
ries by removing the mean and the gain to produce a shape
vector. The mean and gain for each variable are compressed
using scalar quantization, but the shape vectors for all vari-
ables are concatenated to form one single vector. This com-
posite vector is compressed using VQ. Therefore, if we have
v variables and are encoding n time steps, the resulting com-
pressed data will consist of a single volume in which each
voxel will have 2v scalar values and 1 index into a codebook
with size vn vectors. The compressed volume itself will have
the same dimensions as the original volumes but will store
n time steps instead of 1. While the number of time steps n

is a user-defined parameter, in order to maintain quality re-
construction n should be chosen conservatively. The tempo-
ral coherency will largely determine the maximum possible
value for a given desired quality.

For the second configuration, also shown in Figure 1, we
consider spatial blocking by grouping voxels in a 2×2×2
block together. We first group the 8 values for each variable
together. Then we process each block in the same way as

1226

Figure 2: Two-pass algorithm for on-the-fly decom-
pression. In the first pass two original slices are de-
compressed, and in the second pass sampling slices
are rendered from the two decompressed slices.

in temporal compression by removing the mean and gain.
The mean and gain are again quantized and stored sepa-
rately, and the shape vectors are concatenated to form a
single vector to encode using VQ. In this configuration, for
each volume in the original data set of size x×y×z we will
have a corresponding volume in the compressed data of size
x/2×y/2×z/2. Each voxel in the compressed volume will
have 2v scalar values and 1 index into a codebook.

3.2 Decompression and Rendering
Ideally we would like to delay decompression until the

data is actually needed in rendering. By exploiting pro-
grammable graphics hardware, decompression and rendering
can be accomplished simultaneously to provide interactive
visualization directly from the compressed volume data. Of
the various compression techniques available, VQ is uniquely
suited for this task due to its extremely fast decompres-
sion. When rendering directly from the compressed volume,
decompression must precede sampling in the fragment pro-
gram. This brings to light one of the key limitations of exist-
ing methods using on-the-fly decompression: interpolation
of the index volume is incorrect and produces severe arti-
facts. The correct order is to decode each voxel prior to in-
terpolation. This means that trilinear interpolation must be
performed explicitly in the fragment program following eight
decompressions. Because of the impact on frame rate, all
methods to date forego a continuous reconstruction and use
nearest-neighbor filtering. Computing gradients for light-
ing is thus out of the question, as it requires several more
texture reads and 6 additional trilinear interpolations, not
including the actual lighting instructions.

As our goal is quality rendering from the compressed data
set, including continuous reconstruction and lighting, we use
a new variant of on-the-fly decompression during rendering
which is similar to the method used in [10] to render from
2D slices using a single stack of textures. The motivation
for this algorithm is that with the method described above
there are two major inefficiencies: first, a single voxel may be
decompressed many times, and second, manual interpolation
in the fragment program is slower than the built-in filtering
supplied by the graphics card. Both of these problems can
be addressed by decompressing entire slices at a time and
sampling from these slices as shown in Figure 2. We begin by
allocating an offscreen buffer, which will have both a front
and back surface for rendering. The back buffer is used to
decompress slices of the original volume, and the front buffer
is used for volume rendering. The basic algorithm begins by
first finding the axis with which the view is most closely

aligned. Slices are then rendered aligned with that axis.
This method achieves exactly what we want: no matter

how many times it is needed, a particular voxel will be de-
compressed exactly once. Furthermore, when rendering the
sampling slices we can read from the decoded slices using bi-
linear filtering supported by the native hardware. The only
work we have to do in the fragment program is to take two
samples from the adjacent slices and perform the final linear
interpolation by hand to get a trilinearly filtered sample. So
far we have only discussed how to get continuous reconstruc-
tion. If we want to perform lighting then we need to also
compute gradients on-the-fly. In order to do this we simply
keep a 4-slice buffer instead of 2-slice buffer. This enables
us to calculate the partial derivates using central differences
in the fragment program when we are rendering sampling
slices. The drawbacks of this technique are the overhead for
rendering in two passes, and the restriction of using axis-
aligned sampling planes for volume rendering. Nevertheless,
the savings in computation is dramatic, thereby allowing us
to achieve our goal of high-quality interactive rendering from
the compressed data set.

As for the actual decompression (first pass of the algo-
rithm), the mapping to graphics hardware is straightfor-
ward. The index volumes containing means, gains, and
codebook indices are stored as 3D textures and accessed
using nearest-neighbor filtering. The codebooks are stored
as 2D textures with the s coordinate indexing the codes and
the vector offset given by the r coordinate. If we have four
or less variables then the shape vectors can be separated
and stored in the RGBA channels of the texture. In this
way we can retreive the value of all variables with only one
texture read. Although in general codebook accesses should
use nearest-neighbor filtering, in the case of temporal com-
pression we can use linear interpolation between consecu-
tive vector elements, resulting in smooth interpolation in
the time domain; that is, we can animate smoothly through
time instead of discretely from time step to time step. How-
ever, this requires us to duplicate vectors due to the fact
that the hardware allows only bilinear interpolation of 2D
textures.

In order to decompress a single voxel and variable, we
must first access the index volume to find the mean, gain,
and codebook index. The codebook index gives us the s

coordinate of the codebook texture. The value of the r co-
ordinate depends on the type of compression (spatial vs.
temporal) and the variable required. For the case of tempo-
ral compression, simply knowing the current time and the
variable is enough to compute r. For spatial compression we
need a mapping from the voxel position within the 2×2×2
block to a 1D vector offset. We use the same approach as
in [17] and use an address texture to quickly find this map-
ping. The address texture is a 3D texture of size 2×2×2
which is repeated to cover the entire volume. Each texel
in this texture holds the necessary offset which, when com-
bined with the variable, gives a unique r coordinate. Finally
the codebook is accessed and the gain and mean are added
back in to produce the reconstructed value. In summary,
the decompression process consists of a single index volume
read, followed by a single codebook texture read. For spatial
compression we use an additional address texture read.

4. RESULTS AND DISCUSSION
Our implementation of multidimensional encoding first

1227

encodes the volumes in software as pre-processing. For code-
book training we use Pairwise Nearest Neighbor [5] to ini-
tialize and then perform a relaxation with a few iterations
of LBG [11]. Although this training process is slow there
are alternative algorithms available which sacrifice quality
of encoding for speed. As previously stated the spatial com-
pression uses 2×2×2 blocks of data, so for purposes of com-
parison we chose to encode 8 time steps at once for the tem-
poral compression. The decompression and rendering are
performed in graphics hardware using hand-tuned assembly
fragment programs.

To test our implementation we chose three time-varying
multivariate datasets. The first two are compressible fluid
flow simulations of jet streams mixing and were run for 2000
time steps. The first consists of five jets, is sampled on a
128×128×128 grid, and stores every time step. The second
consists of four jets, is samped on a 256×256×256 grid, and
stores every 10th time step. Each volume has 3 variables:
energy, density, and velocity magnitude. The third data
set is from a supernova simulation with 200 time steps and
three variables: pressure, density, and velocity magnitude.
The grid size is 256×256×256.

The results of the compression tests are shown in Tables
1-4. All tests were performed using a single PC with a P4
3.2 GHz and 2 GB of RAM. Encoding times for both spa-
tial and temporal compression ranged from several minutes
to tens of minutes. In Figures 3-5 selected results are dis-
played showing the three variables for the five-jet data set
and the supernova data set at a range of compression rates.
These images were generated by our on-the-fly decompres-
sion implementation, which achieves 17 fps when rendering
to a 512×512 window.

We see from these tests that temporal encoding results in
higher quality than spatial encoding for the jet data sets,
but the opposite is true for the supernova data set. Thus
it is specific to the simulation itself as to whether it would
be better to encode in space or in time. It would be nice to
be able to predict which is better a priori; however, to our
knowledge no investigation into this topic has been made.
For the five-jet data set we also stored every time step in
order to study the effect of temporal coherence in the tem-
poral compression. As can be seen the error is dramatically
reduced at the same rate when every time step is present.
However, the error for using every 10th time step is already
low enough that this further reduction does not noticeably
improve the quality in terms of volume rendering; thus, there
is no real advantage in using every time step for purposes of
temporal compression of 8 time steps.

As expected, the lower-rate multivariate compression re-
sults in larger errors, but for most cases the error increase is
not noticeable. For these cases multivariate compression is a
viable option for achieving greater compression while mak-
ing available all variables for other tasks, such as compar-
ative/multivariate visualization. While the errors listed in
Tables 1,2 and 4 may seem very small, we have intentionally
set the rate so that high fidelity reconstruction is achieved.
The reason for this becomes clear by examining the artifacts
present in Figure 3d. While for image compression the error
observed for a given pixel is just the error associated with
that pixel in the reconstructed image, in volume rendering
the error for a given pixel is the product of many errors
accumulated along the ray. In addition, high frequency fea-
tures such as specular highlights and isosurfaces (which are

Table 1: Compression results for five-jet data set
(128×128×128 grid, 3 variables, 2000 time steps).

Type Space Time

Multivariate Com. Rate (%) 70.05 70.05
PSNR-e (dB) 47.17 55.73
PSNR-r (dB) 52.79 60.96
PSNR-v (dB) 42.11 57.25

Univariate Com. Rate (%) 61.72 61.72
PSNR-e (dB) 51.72 66.92
PSNR-r (dB) 56.96 65.94
PSNR-v (dB) 49.40 67.70

Table 2: Compression results for four-Jet data set
(256×256×256 grid, 3 variables, 2000 time steps).

Type Space Time

Multivariate Com. Rate (%) 70.05 70.05
PSNR-e (dB) 56.24 57.16
PSNR-r (dB) 56.97 65.72
PSNR-v (dB) 49.17 58.28

Univariate Com. Rate (%) 61.72 61.72
PSNR-e (dB) 60.33 60.65
PSNR-r (dB) 60.38 70.71
PSNR-v (dB) 52.60 61.81

Table 3: Compression results for supernova data set
(256×256×256 grid, 3 variables, 200 time steps).

Type Space Time

Multivariate Com. Rate (%) 70.05 70.05
PSNR-d (dB) 34.58 32.31
PSNR-p (dB) 39.58 37.71
PSNR-v (dB) 41.70 36.45

Univariate Com. Rate (%) 61.72 61.72
PSNR-d (dB) 36.34 32.62
PSNR-p (dB) 39.89 38.00
PSNR-v (dB) 45.68 38.27

Table 4: Temporal compression of five-jet data set
encoding every time step vs. every tenth time step.

Type Time-1 Time-10

Multivariate Com. Rate (%) 70.05 70.05
PSNR-e (dB) 65.20 55.73
PSNR-r (dB) 69.01 60.96
PSNR-v (dB) 69.05 57.25

Univariate Com. Rate (%) 61.72 61.72
PSNR-e (dB) 70.92 66.92
PSNR-r (dB) 71.13 65.94
PSNR-v (dB) 78.37 67.70

1228

(a) (b)

(c) (d)

Figure 3: Rendering of the energy field (variable e)
of the five-jet data set: (a) original (b) compressed,
PSNR=70.92 (c) compressed, PSNR=55.73 (d)
compressed, PSNR=47.17

produced from transfer functions containing high frequen-
cies) will expose even the slightest errors. All these factors
make it necessary to use high quality compression; in fact,
we see in the figures that in most cases a minimum of 50
dB is required to avoid artifacts, but this is dependent of
the data set. For the supernova data set even our high-rate
encoding results in noticeable artifacts; this fact highlights
the need for mapping better, more sophisticated compres-
sion techniques to the graphics hardware.

Our compression methods are able to reduce the five-jet
data set from 12 GB to 3.5 GB, and the four-jet data set
from 94 GB to 28 GB. The supernova data set which takes
up 9 GB is reduced to 2.8 GB. While in terms of rate-
distortion our method cannot compare to other techniques
such as wavelet encoding, we are able to take advantage of
the coherency among variables and our method is simple
enough to allow on-the-fly decompression during rendering.
This makes our method more appropriate for the task of
volume rendering, whereas other methods are primarily for
archiving. An important direction for future work is the
development of better on-the-fly compression schemes, as
current VQ-based methods are sometimes unable to achieve
high quality reconstruction.

5. CONCLUSIONS
In this paper we present a solution which addresses the

need for data reduction in large supercomputing environ-
ments where data resulting from simulations occupies tremen-
dous amounts of storage. Our solution employs a lossy en-
coding scheme to achieve data reduction with several options
in terms of rate-distortion behavior. We focus on encoding

(a) (b)

(c) (d)

Figure 4: Rendering of the supernova data set: (a)
original density (b) original velocity magnitude (c)
compressed density, PSNR=36.34 (d) compressed
density, PSNR=32.31

(a) (b)

(c) (d)

Figure 5: Rendering of the velocity magnitude
field (variable v) of the five-jet data set: (a) orig-
inal (b) compressed, PSNR=78.37 (c) compressed,
PSNR=67.66 (d) compressed, PSNR=49.40

1229

of multiple variables together, with optional compression in
space and time. The compressed volumes can be rendered
directly with commodity graphics cards at interactive frame
rates and rendering quality similar to that of static volume
renderers. Compression results using a multivariate time-
varying data set indicate that encoding multiple variables
results in acceptable performance in the case of spatial and
temporal encoding as compared to independent compression
of variables. The relative performance of spatial vs. tempo-
ral compression is data dependent, although temporal com-
pression has the advantage of offering smooth animations,
while spatial compression can handle volumes of larger di-
mensions.

Acknowledgments

This work has been sponsored in part by the U.S. National
Science Foundation under contracts ACI 9983641 (PECASE
award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;
and Department of Energy under Memorandum Agreements
No. DE-FC02-01ER41202 (SciDAC) and No. B523578 (ASCI
VIEWS). The authors would like to thank Jens Schneider
for his helpful comments.

6. REFERENCES

[1] Anagnostou, K., Atherton, T., and Waterfall,

A. 4D volume rendering with the shear warp
factoriszation. In Proceedings of Volume Visualization

and Graphics Symposium 2000 (2000), pp. 129–137.

[2] Chiueh, T.-C., Yang, C.-K., He, T., Pfister, H.,

and Kaufman, A. Integrated volume compression
and visualization. In Proceedings of IEEE

Visualization ’97 Conference (1997).

[3] Cochran, W. O., Hart, J. C., and Flynn, P. J.

Fractal volume compression. IEEE Transactions on

Visualization and Computer Graphics 2, 4 (1996),
313–322.

[4] Engelson, V., Fritzson, D., and Fritzson, P.

Lossless compression of high-volume numerical data
from simulations. In Data Compression Conference

(2000).

[5] Equitz, W. H. A new vector quantization clustering
algorithm. IEEE Trans. Acoust., Speech, Signal

Processing 37 (1989), 1568–1575.

[6] Fowler, J., and Yagel, R. Lossless compression of
volume data. In Proceedings of 1994 Symposium on

Volume Visualization (1994).

[7] Ghavamnia, M. H., and Yang, X. D. Direct
rendering of laplacian pyramid compressed volume
data. In Proceedings of Visualization ’95 Conference

(1995), pp. 192–199.

[8] Guthe, S., and Straber, W. Real-time
decompression and visualization of animated volume
data. In Proceedings of the IEEE Visualization 2001

Conference (2001), pp. 349–356.

[9] Guthe, S., Wand, M., Gonser, J., and Straber,

W. Interactive rendering of large volume data sets. In
Proceedings of the IEEE Visualization 2002

Conference (2002), pp. 53–60.

[10] Lefohn, A. E., Kniss, J. M., Hansen, C. D., and

Whitaker, R. T. Interactive deformation and
visualization of level set surfaces using graphics

hardware. In Proceedings of IEEE Visualization 2003

Conference (2003), pp. 75–82.

[11] Linde, Y., Buzo, A., and Gray, R. M. An
algorithm for vector quantizer design. IEEE

Transactions on Communication (1980), 84–95.

[12] Linsen, L., Pascucci, V., Duchaineau, M.,

Hamann, B., and Joy, K. Hierarchical
representation of time-varying volume data with
’4th-root-of-2’ subdivision and quadrilinear B-spline
wavelets. In Proceedings of the 10th Pacific Conference

on Computer Graphics and Applications - Pacific

Graphics 2002 (2002), IEEE Computer Society Press.

[13] Lum, E., Ma, K.-L., and Clyne, J. Texture
hardware assisted rendering of time-varying volume
data. In Proceedings of IEEE Visualization 2001

Conference (October 2001).

[14] Ma, K.-L., Smith, D., Shih, M.-Y., and Shen,

H.-W. Efficient encoding and rendering of
time-varying volume data. Tech. Rep. ICASE Reprot
No. 98-22, Institute for Computer Applications in
Science and Engineering, June 1998.

[15] Ning, P., and Hesselink, L. Vector quantization for
volume rendering. In Proceedings of 1992 Workshop

on Volume Visualization (1992), pp. 67–74.

[16] Ning, P., and Hesselink, L. Fast volume rendering
of compressed data. In Proceedings of Visualization

’93 Conference (1993), pp. 11–18.

[17] Schneider, J., and Westermann, R. Compression
domain volume rendering. In Proceedings of the

Visualization 2003 Conference (2003), pp. 293–300.

[18] Shen, H.-W., Chiang, L., and Ma, K.-L. A fast
volume rendering algorithm for time-varying fields
using a time-space partitioning (tsp) tree. In
Proceedings of the IEEE Visualization 1999

Conference (1999), pp. 371–378.

[19] Shen, H.-W., and Johnson, C. R. Difference
volume rendering: A fast volume visualization
technique for flow animation. In Proceedings of IEEE

Visualization 1994 Conference (1994).

[20] Sohn, B.-S., Bajaj, C., and Siddavanahalli, V.

Feature based volumetric video compression for
interactive playback. In Proceedings of Volume

Visualizationa nd Graphics Symposium 2002 (2002),
pp. 89–96.

[21] Westermann, R. Compression time rendering of
time-resolved volume data. In Proceedings of the

Visualization ’95 Conference (1995), pp. 168–174.

[22] Wilhelms, J., and Van Gelder, A.

Multi-dimensional trees for controlled volume
rendering and compression. In Proceedings of the 1994

Symposium on Volume Visualization (October 1994).

[23] Woodring, J., Wang, C., and Shen, H.-W. High
dimensional direct rendering of time-varying
volumetric data. In Proceedings of Visualization 2003

Conference (October 2003), pp. 417–424.

[24] Yang, C.-K. Integration of volume visualization and
compression: A survey, September 2000. Research
Proficiency Exam Report.

[25] Yeo, B.-L., and Liu, B. Volume rendering of
dct-based compressed 3d scalar data. IEEE

Transactions on Visualization and Computer Graphics

1, 1 (1995), 29–43.

1230

	16-cover
	16-paper

	laur #: 10-02243
	title: TimeVarying, Multivariate Volume Data Reduction
	authors: James P. Ahrens 113788 CCS-1Nathaniel Fout University of California, DavisKwan-Liu Ma University of California, Davis
	submitted to: ACM SAC 2005, March 2005
	menu warning:

